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GENERAL THEORY OF AERODYNAMIC INSTABILITY AND THE MECHANISM OF
FLUTTER

_y THEODORE THEODORSEN

SUMMARY

The aerodynamic/orces on an o,_'cillating airfoil or

airfoil-aileron combination of three _'ndependent degrees

of freedom have been determined. Tf_e problem re,solres

itself into the ,solution oJ certain definite integral,_', which

have been ident(fied as Be._sel function._ of the fir._t aT_d

seeond kind an.d of zero and first order. The theory,

being based on potential flow and the K_dta condition,

is fundamentally effuiralent to the conventional wing-

section theory relating to the steady case.

The air Jorces being known, the mechanism of aerqdy-

namie instability has been analyzed in detail. An exact

solution, invoh'iT_g potential flow and the adoption oj the

Kutta eondition, has been arrived at. The solution is oJ

a simpleform and is expressed by means of an auxiliary

parameter k. The matbematical treatment also provides

a eonrenient cyclic arrangement permitting a uniform

treatment of all subea,_es of two degrees of freedom. The

flutter velocity, defined as tf, e air velocity at wMch.flutter

starts, and which is treated as the unknown quantity, is

determined as a/unction of a certain ratio of the fre-

quencies in ttte separate degrees of.#eedom for any magni-

tudes' and eombination._ of the aidoil-aile_vn parameters.

For tho,¢e interested solely or particularly in the numeri-

cal solutions Appendix I has been prepared. The rou-

tine procedure in solacing numerical examples is put

down detached/rom the theoretic_tl background oJ the

paper. It first is nece._sary to determine a certain number

osf constants pertaining to the ease, then to perform a .[ew

routine calculations as indicated. The result is readily

obtained in. the form oJ a plot of flutter reloeity against

frequency for any values o[ the other parameters chosen.

The numerical work o[ calculating the constants is sim-

plified by referrin9 to a number of tabl'es, which are in-

cluded in Appendix I. A number oj iUustrativ'e examples

and experimental results are given in Appendix II.

INTRODUCTION

It has been known that a wing or wing-aileron struc-

turally restrained to a certain position of equilibrium
becomes unstable under certain conditions. At least

two degrees of freedom are required to create a con-

dition of instability, as it can be shown that vibrations

I of a single degree of freedom would be damped out by

the air forces. The air forces, defined as the forces due

to the air pressure acting on the wing or wing.aileron

. in an arbitraw oscillatory motion of several degrees of

I freedom, are in this paper treated on the basis of the

theory of nonstationary potential flow. A wing-

section theory and, by analogy, a wing theory shall be

thus developed that applies to the case of oscillatory

]notion, not only of the wing as a whole but,also to

that of an aileron. ]t is of considerable importance

that large oscillations may be neglected; in fact, only

infinitely small oscillations about the position of

equilit)rium need be considered. Large oscillations

are of no interest since the sole attempt is to specify

one or more conditions of instability. Indeed, no

particular type or shape of airfoil shall be of concern,

the treatment being restricted to primary effects. The

differential equations for the several degrees of freedom

will he t)_t down. Each of these equations contains a

statement regarding the equilibrium of a system of

forces. The forces are of three kinds: (1) The inertia

forces, (2) the restraining forces, and (3) the air forces.

There is presumably no necessity of solving a general

case of damped or divergent motion, but only the

border case of a pure sinusoidal ]notion, applying to the

case of unstable equilibrium. This restriction is par-

ticularly important as the expressions for the air force

developed for oscillatory motion can thus be employed.

Imagine a case that is unstable to a ve_* slight degree;

the amplitudes will then increase very slowly and the

expressions developed for the air forces will be appli-

cable. It is of interest simply to know under what

circumstances this condition may obtain and cases in

which the amplitudes are decreasing or increasing at a

finite rate need not be treated or specified. Although

it is possible to treat the latter cases, they are of no

concern in the present problem. Nor is the internal

or solid friction of the structure of primary concern.
The fortunate situation exists that the effect of the

solid friction is .favorable. Knowledge is desired con-

cerning the condition as existing in the absence of the

internal friction, as this case constitutes a sort of lower

limit, which it is not always desirable to exceed.
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Owing to the rather extensive field covered iJ) tlle

l)nper it has been considered ne('(,ssarv to tmdt many

elenmntary proofs, it being left t() tile reader to verify

certain specific stateiilcntsa. In (he first part of tile

paper, the velocity l)otcntinls due to the tlow around

the airfoil-aileron are deveh)ped. These potm)tials

are treated in rue (.lasses: The noncirculating tlow

potentials, and those due to the surface of disctm-

tinuity behind the wing, referred to as "circulatory"

potentials. The magnitude of the circulation for 1111
()scillatin_ wing-ailer()n is determined next. The
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}:lqUl{E t ('onfnrrnal repre>en(alJ,)n (ff the _)ng profile i)y a circle.

forces and nn>ments actin_ (>n the airfoil are then

ohlqined |)y intearation. In the latter lmrt of the

paper the differential equations of motion are put

down and the particular and intl)ortant case of un-

stable equilil)riunt is treated in detail. The sol,tion

of the prol)lem of dctern_ining the flutter speed i_

tinally given in the h)rm of nn equation expressing a

,'elationshi 1) I)('(_een the vari()us 1)arameters. The

three suitcases of two degrees of freetlom are treated
in detai[.

The Pal>or l)rol)oses to dis('lose the basic, nature of

the nwehanism af flutter, ]e'wing modifications of the

primary results by secondary effects for future investi-

gations. _ Su('h s('('(mdarv ell'ecl_ are: The effects of q

finite span, of section shape, (>f devi:)tions from poten-

tial flow, including nls() mo(lific:_tions of results to

include twistin_ and t,en(tin_ of actual wing sections

instead of pure torsion and deflection as considered in

this pal/er.

'File supplementary experimental work included in

Al)pendix II similarly refera to well-defined elementary

eases, the wing employed being of a large aspect ratio,

nondefornmble, and given definite degrees of freedom

by a supporti)lg mechanism, with external springs

lmdntaining th(: equilibrium l>{)sitions of wing or wing-
aileron. The experimeutal work was carried on

largely to verify the .,_,eneral shape of and the apl>roxi-

mate m'lgnitu,tes i)wolve(t ill the theoretically pre-

(fitted response char:wteristic>. As tile present report
i_ limited to the lmtthematical :tsl)ects of tile flutter

problem, sl)ecili,, rel:,))nmcnda)ti(ms in re_ard t<) prac-

tical apl>lications are not given ill this paller.

I 'I'llV _lTect u[ itlterrlM rri/'liOzl iS ill St)lilt Cases essetltia]; this subject will h_.

contained ,n a SllhSl:q)lerl[ [);lppr.

COMMI'I'TEE FOR AERONAU'I'ICS

VELOCITY POTENTIAl.S, FORCES, AND MOMENTS OF

THE NONCIRCULATORY FLOW

We shad l)rocecd to ('alcuhtte the v,u-ious veh)city

potent i'ds due to l>t)sition trod veh),,ity (,f tile individ-

uql parts in the whole of the wing-:dleron system.

[,et us templ,rarily repre>'ent th(' u ing by a circle (fig.

1). Tile p()tential of a sour,.e _ at tile origin is _ive)l

by

_=;Tr log (a:2_ ?i.2)

For a source + at (.q,?l)) on the ('ir('le

_=i_ log {(z--z,):+ (V- ?/,)_}

l'utting a double source 2( at (+,,.V,) and a m)uble

negative s()urcc --2e at (+t, y)) we obtain for the itow
aI'o(lnd l.ho circle

e (.r-.rl)": + QI ?h) "_

¢-- _ log iTr-:.r_:- (;/_ .v,)'

The function ¢ on the circle gives directly tile sur-

face potential of a straiaht line pq, the pr()jection of the

,.ircle ()n tim horizontal tliameter. (See li,_. 1.) In

this case ?; = v'l -x-' anti _o is a fun(.tion of x only.
We shall need the inteL, rnls:

• ,, 2

'logS'r-'r'!i+5 _< -?"{;(]a', = "(*"-c ],,_ N--2 _,"1 --a" cos 'r
,]c \.r-a'_)" +(_l+?]_v ' "

qn(l

f' - c)d.r,= x [_5_, i a:
lr 711) _' ,

--cos-lC(X--'2C) v'l--x 2 ; (r c):]o'..'N

w h('re .V = l c r _tl i" X'.! _'f

y C

The locali(ln i)f tile ccnter (,f gravity of the wing-
Micron x= is measured from a, the c()()rdinate of tile

axis of rotation (fig. 2): x_ the locaiion of tile center

_ h _gO r)

\ L /7 o..q. ofe f_re w+o9

!-<a _,+"
'Ax/5 of cola'l/on : +/j

i £ _ of at,let-ore" ,

FI_;L+HE 2 ---l'ur_lZleter> of the mrfuil.alleroo COfnl)ln_ll(Jl}

of grn_ ity of the aileron is measuret] from c, the coordi-

oate of the hinge; an([ r. and r. are the radii of gyration
,)f the wing-aileron referred to a, and of the aileron

referred (o Ihe hinge. The quantilies x e and re are

"r,,duce(l" values, as defined later in tile paper. Tile

qunntities ,,, z,,, c, and ._ are i)ositive toward the rear

ri_h*), 1, is _he vertical coordinate of the axis of rota-

tion at a with respect to a tixed reference frame and is

l)l)sitive dounward. Tile angles a and B are positive

c]oc],:v;ise (ligl)t-hand turn). ']'he wind veh)city r is t(,
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the right and horizontal. The angle (of attack) a

refers to the direction of v, the aileron angle _ refers to

the undetlccted position and not to the wind direction.

The quantities re and ra always occur as squares.

Observe that tile leading edge is located at -1, the
trailing edge at + 1. The quantities a, c, x,, xa, r,,

and r_, which are repeatedly used in the following
treatment, are all dimensionless with the half chord b
as reference unit.

The effect of a flap bent down at an angle f_ (see fig.

2) is seen to give rise to a flmction _ obtained by sub-

stituting - v#b for _: hence

% = v_rb'[_,/1 - x _ cos-'c -- (x-- c) log N]

To obtain the eft'cot of the flap going <lown at an

angular velocity _, _e put _ --(x_-c)_b" and yet

_b_. --
¢_=2rt_,,1-c'_,.i x_+cos-_c(x 2c)_"l-x-'

-- (x-c) 2 log NI

q'o obtain the effect of an angle a of the entire air-

foil, we put c = - 1 in the expression for _, hence

¢,_ = vab _/1 - x _

To depict the airfoil in downward motion with a veloc-

ity/_ ( + down), we need only introduce -_ instead of a.
V

Thus

_ =/_b41 - x_

Finally, to describe a rotation around point a at an

angular velocity &, we notice that this motion may be
taken to consist of a rotation around the leading e(l_(,

c = - 1 at an angular velocity & plus a vertical motion

with a velocity- &(1 +a)b. Then

_,a=2rrrr(x, 2)_/L--Y--&(L _ ")bWi J:

:Ab_(12.r a),/i x:

The following tabh_s give in succession the velocity

potentials and a set of integrals 2 with associated con-

stants, which we will need in thh calculation of the _,ir
forces and ]nolnents.

VELOCITY POTENTIALS

_ - vab _rl -- x u

_ = &b_(12x a) v"l x _

lvBb[v..' l _z cos-_c _ (z - e) log N]

l
_= "_:'rrfJb:['vi_#" V'] x2 + (z 2c) _ii_-7 cos 'c

- (.r -c): log N]

where N = 1 c,r - _/i _ x: _::1--c"

z Some of the more ,liflieult inlegral evMualions :ire _q_en in .'t ppl, ndix II I

FLUTTER

INTEGRALS

'_ b +_

jil ph(l.c = b2/_T' f -_ b "_(lx = 2 h_r

j'l V_-Ig,s(I.r ab:T_ _a(t.r = -&b"2 _
c . I

'1 +i b ,,
.to g'_d.r: -- :rft,_T_, .V_I _(IX= -,2V_']4

_I b 2 .

_c b V_ l b• 1¢a(37- c)(tJ'= -- 21'O/_/'l . i _,o(X- c)dz = - 5vffc.

_' b. V__ b., ¢i.(x c)(1*=-2h7"_ . _(z c)dx=-2_cr

;/ f"• _,a(z c)dx=ab'T_., , _ _s(z-c)dx=_b_7',r

+_ b

CONSTANTS

1
T, = - _ _/1 -- c-'(2 I- c_) + c cos-lc

T, c(1 c _) _/1-c_(l+cZ)COS _C÷C(COS-lC) ='

(,)T. = - g _-c_ (cos tc)_+Icv<l--d cos-lc(7+2c _)

-_(t d)(Sd_4)

7'_ cos=_c + c,,/1 -c _

T; - (l - d) - (cos-_c) 2+ 2c_/l - c" cos-_c

'/'_= 7;

T7 -- +C:' eos-_c+ S x,'1-C2(7+2c 2)

1 (:_ 1)
Ts= - 3 _ 1 (2c _÷ _ tees .re

1 1 " .- _ '_ .
T.,=_E_(,I-c ) +aT,] 1=_ (-p+aTO

1 / ,__,\_
where p = - 5 _]l--c')

Tic = %/1- cZ4 cos -_ c

T. =cos-_ c (1 -2c)+ (I -d (2-c)

T,.-_,/l-_(2+c) cos-_c(2c_ 1)

7 1
"',3=_ [- Tr- (c--a) T,I

1 1
T. = _i-;+ 2 ac

FORCES AND MOMENTS

The velocity potentials being known, we are able to

calculate local pressures and by integration to obtain

the forces and moments acting on the airfoil and

aileron.
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Employing the extended Bernoulli Theorem for un-

steady flow, the local pressure is, except for a constant

/w _ b,p)P'= -Pt,_ + _7
where w is the local velocity and _ the velocity poten-

, b¢
tial at the pohlt. Substituting w=t+_x we obtain

ultimately for the t)rcssure di[t'erence between the

tapper and lower surface at x

P=-2p(v_x+_)

where v is the constant velocity of the fluid relative to

the airfoil at infinity. Putting down the integrals for

the force on the entire airfoil, the moment on the flap

[y

/ x,y

FIGURE 3.--Conforma] representation of the wing profile with refer0nee to the

circulatory flow.

around the hinge, and the fimment on the entire air-

foil, we obtain by means of partial integrations

) ['+1

P = - 2pbJ_, ;_d.r

[' j>a M_=-. b '_. (_(x-c) dx+2pcb

M.=-2ob:.V_÷l_¢(.c c) d._ + '-'v_,bf_'+,dz

- ')pb 2 -['+llb (c-a) dx'
J -1

Or, on introducing the individual velocity potentials

from page ,5,

P=-pb2[rTra+_'D brai_ v7"4_ bl','_j (1)

= - pb'tT, v2a- (2T_+ T,)br&+2T,_b:_+ 1 T,.2 _

2 2 1 2

-(c--a) T4}b[3v+{-- T_ (c a) ",}b2_

ba_rh- 7rrh-] (II I )
/

VELOCITY POTENTIALS, FORCES, AND MOMENTS

OF THE CIRCULATORY FLOW

In the following we shall determine the velocity

potentials and associated forces and moments due to a

surface of discontinuity of strength U extending along

the positive z axis from the wing to infinity. The

velocity potential of the flow around the circle (fig. 3

resulting from the vortex element -51" at (X0, O) is

A [' tan-i--}'-l-

Al' 1 ( -- _ -t- :tZ°) ,"

= _ tan-

X_- (Xo + A_)X+ Y_+l

where (X, Y) are the coordinates of the variable

and X0 is the coordinate of - AF on the x axis.

Introducing .Yo + 1
Xo = 2x0

or X0=x0+ _/xo_- 1 on the .c axis

and X=x and Y=_q-z _ on the circle

the equation becomes

a r _q-_) v% _- 1
¢'_°:: - 2_" tan-I 1 -xxo

This expressiolr, gives the clockwise circulation

around the airfoil due to the element -Ar at zo.

,) {b,p b,_)We have:p - .p_t+v_x

But, since the element -Ar will now be regarded as

moving to the right relative to the airfoil with a

velocity v

b_ be,

llence, p= 2pt'(b.t+_Xo)

Further

x __ _+Xo_,q--.r _

2_r be _,X_.z.... _(l xxo) V'I -- x:_: (l--x.re) _
AF bx l+(1--X_)(XJ l)

(1 XXo)_

_l,,'Xo_- l 1

-V'l-_ (Xo-_)
alld

1 Xo + _ixo___ x

2_r be _..7-_!)-- XXo) _lxo_ i (1--X+o):
,5I" bxo 1+ (1-_ (xo'_-1)

(l - .rxo)'_

v"Y_ +_ 1
=_+o'_= l ix° z)

By addition:

b,_ q_ b__Al" Xo+X
o_, O_o- 2; _,1_-_/=,o_]
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To obtain the force on the aileron, we need the

integral

CI(_)SO _ bso'_dx= AF F' xo+x .
.Ic k _-x bxo] ,__ I . _-. =(ix27r3c _/xo - 1V1 -x='

_rr 3"0 _, , 4V-:7'

_l'F 3"0 , _,"'1-c27
= 21r/_,- ): = COS- C -1- _|

Lxx0 - 1 vXo" - 1 J

Thus, for the force on tile aileron

5Pd=-pvb--I ._cos- e+--r_/1-e| or
\ _,,:xo"- 1 _,/Xo2- 1 /

'.5,I" Xo 1_P. = - o_,b [-_= (cos- c- _--:)
rr k_lxo 2- 1

+ y_

Integrated, with AF = Udx0

,," ..2 _ X0 _

° -- ]
dl ¥.r 0- !

for c= t we obtain the expression for P, the force
on the whale airfoil

P= otbJ_ _/_ Udxo (IV)

Since U is considered stationary with respect to the
fluid elements

U= f(vt- x0)

where t is the time since the beginning of the nmtion.
U is thus a function of the distance from the location

of the first vortex element or, referred to a system

moving with the tluid, U is stationary in value.

Similarly we obtain for the moment on the aileron

•_ (_-r_)(x-c)'lx=2,.'c _.',-x V'Xo'--1

AI' 1 F ,--., x_i-x _ '

= -_/3",,,-iL _°,,'1-_'-_ 2, c,1-:

,:)co:q
= + 2 _r _/ (xo+ _ -.c) _/i - c "_

+_(1-2x+o.c_

i-

.xr[ :-" - (,'l-:-c cos 'c)
= +_;LV:g: 1

1 -I
+77J 

Finally

_.11_= -- vz2AI'V 3"0 {-_/1-_(1 +2)

- cos-'c(_+ 1"_1+ l/Z+ 1_}l _¥L_Yl(C°s-'e-e4V :) ]

Putting 2_F= Udxo and integrating

+1-cos-'c (c _)}: /:_= Udxo
_x0 - 1

+(cos-,c _,,_)-_ C'-/_ua,o] (v)2.h _xo- 1

Further, for ttle moment on the entire airfoil around a

+_ _)so _so AF 1 x
f-I (bx _'o) 2r _xo_-iE( 2 a ) _ _ I _ _--+ (x-a)dx=- ,5_ _: 3"0+--

d+: 1 ,
1

-- xoa

and AM. = -- pvb2Ar -_/xj _ 1

Integrated, this becomes

fol-- x0 a

51. = -- prb2, V'3"oz - 1 Udx0

f®[l+l o xo(a;1)lUd3" °

,2f'[1 /x°+l -(a ,))r77_lUdxo (VI)=-pz, o l, /2"_':x_ -- i _ 1 x°• - _,'x0 -- 1/

THE MAGNITUDE OF THE CIRCULATION

The magnitude of the circuhttion is deternfined by

the Kutta condition, which requires that no infinite

velocities exist, at the trailing edge,

or, at x= 1

-_-.r(sor ! SO.q SO/__ so&I_ ¢_ I_ ¢ _ ) = finite

Introducing the values of soo, etc. from page 5 and

c)so
:r from _x page 6 gives the important relation:

1 F_,"x0 +1-.. , : -/1 a)&_j_ _Cd_o=_._+_(,_-
/

+ _vB + b T_ "__ (VH)

This relation must be satisfied to comply with the

Kutta condition, which states that the flow shall leave

the airfoil at the trailing edge.
It is observed that the relation reduces to that of the

Kutta condition for stationary flow on putting 3"_= :_,
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and from IV1)

hltroducing

. f"t  :,lZI
-__/-i "_ -] x,_] 7._ l e

f" /£;:;i,,,%:Z-:_("_'

1'= 2pvbTr('Q (VII1)

we obtain finally

?.l_=- 2pvb_E(-(i : d(l + 2)-cos-_ c(c + _))C

' ]+2(cos-'e-c_l c-') #. pvb:'(7'_J: TO(2

3I._ 27rpvb_[(,, +_)C- _](,)

(IX)

X)

FOR AERONAUTICS

where Q is given above and C- ('(k) will be treated in

the following se.tion.

VALUE OF THE FUNCTION C(k)

wtlere s vt (s_ _), the distance from the fir.s.t vortex

element to the airfoil, and k a positive constant deter-

mining the wave length,
then

{• _ d'o P ikXoil,f °

('(_i .I_ (_0_- 1

Jl _'.ro: 1

These integrals are known, see next part, formulas

(XIV)--(XVII) and we obtain 3

_ .Tr

('(]c) " "11 -) i )'l

,: ,r . ., . .. = -ida+ )'0)_/(}',-_d,,)

=(-J,_Y,_I-(J,_-},,) i(), d,,)_
[Jl-- }')z+ (}" jo/

d,(J, _ }'0) _ Y,(Y, d0)

(J, + }'0) _+ ()'_ do) _

•}',(J, _, }%) - J,( }',- Jr,)
-_ (j,.,.)o)__(y_jo) _ =F+iG

I,,_J,('U, _ }'o)_ }',(Y,-do) (XII)
(Jr+ }'o)_-+ (}', do) _'

G= }"}'''d'J"
(j_ + }-0)_, (). ,10)_ (XlIl)

These functions, which are of fimdamental import-

ance in the theory of the oscillating airfoil are given
I

graphically against the argument k in figure 4.

SOLUTION OF THE I)EFINITE INTEGRALS IN f' BY M EANS OF BESSEL
FUNCTIONS

We have

f"K,(z) = e ..... _' ('osh ,it <It
,m

iFormula (34 , p. 51 Gray, Mathews

& MaeRobert: Treatise on Bessel

Functions. London, 1922)
where

K. (t) = e _ G. (it)

(Eq. (28), sec. 3, p. 23, same reference)
and

- [ '?G.(x)= - }'.Ix) 4 log2 y+_ .Ix)

but

Y.(x)=_}'.(x)+(log2 7)J.(x)

(where )'.ix) is from N. Nielsen:

Handbucll der Theorie der (!ylind(.r-

fi,nktionen. Leipzig, 1904).

IL(1)
I "]'his llIVly 11]_obe expressed in II_rlkel functions, C'_ II, O)+i II,rr_
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Thus,
7r

(;. Ix) - _ [ )'° (.r) iJ, Ix) ]

We have
m _ e/k x

OF

.,_ f-_,,_ _x,l+ i'osiI, _,xd.
_ rr..2,Y° (k) + * 7)_Jo (k) .j_ ._./x,zL [ 4- i .l, .vgx-' :_1

Thus,

®cos kx(lx rr• .vTr__ = - 7, Y0 (k) (XIV)

if si,I k.r,l/=,_ jo(,.) (XV
, _'a: 2 1 2

Further,

K,( ik) _.tl ®*_.... h, eoshtdt 3' ,"x_7:i

71"
iG, (k):: i _, Y, (k) - 7,J, (k)

 o\x=. i_ -1 (cos k.r t i sin k.r) dx

Thus,

t': * "{'_aT--'tx= - ._J, (a-i (xv1)
, , _,'x e 1 2

= x sin kxdx_ _ lr ). (k) (XVI1)
• _,TXZ 1 -- ,_ 1

TOTAL AERODYNAMIC FORCES AND MOMENTS

TOTAL FORCE

From equations (l) and (VIl l) we obtain

l' pb'2(wra + rd_ rrb,,ii - vT4_ - 5/'_b_)

- %rprbC cc, + ],+b(_-a)&-+ lTu, v[2,

+b,J¢'l',,_} (XVnl)

TOTAL M O M I_)NTS

Fr(,hl equations (I1) and (IX) we obtain similarly

- T_ a- 21" vb&J_l_= pbeI 2'/'a -T,t (. )j t 2T, ab_a

+ lv"fl (_/'5- T, 7',o)- :21vbaT; 7'n- l"l'ab_'a

-. _ ,J • 1
- T_bl,_-prb_7",_(_lVa-l h +b(_--a)&

+lT,,v _ I ,, .I (XIX)
r ! b2 rS/"{_J

From equations (Ill) and IX)

2 | "

.''. pb E_( 2 - (I )Pl','_ I _rb2( I_ 4, (12)_

+ (7; + Tm0)d_
1

+(5/'_ "_Fs- (c a "l',+ ,27' )rbfl

-t 2pvb',(a +12)("( ra-t "b+ b(1- a)&

+ + I- I
(XX)

DIFFERENTIAL EQUATIONS OF MOTION

Exprossing the equilibrium of the nmmeuts about a

of tim entire airfoil, of the moments on the aileron

about c, and of the vertical forces, we obtain, respec-

tively, the following three equations:

a: --I=ii--Ie_-b(c-a)Se_-S.)_ aC,,+,]l= 0

fl: -Iea-Ioa-b(c-a)_S_-hSe t_C_ + Me- 0

t,: - _M- aS. - _Se - M=;_+ P = O

Rearranged:

a: iiI.+_(Ia+b(e-a)Se)+)_S=+aC_-Mo=O

fl: ;_(I_+b(c-a)S,)+_Ioi hZ_-÷-flC_-M_=O

h: iiS= + ]_& + )_M + hC_ - P: o
The constants are defined as follows:

o, mass of air per unit of vohune.

b, half chord of wing.

M, mass of wing per unit of length.

S.,S_ static nmments of wing (in slugs-feet) per
uuit length of wing-aileron and aileron,

rcsl)ectively. The foriner is referred to

the axis a; the latter, to the hinge c.

I.,I_, ntonients Df inertia per unit length of

wing-aileron and aileron about a and c,

respectively.

C., torsional stiffness of wing around a, cor-

responding to unit length.

C_, torsional stiffness of aileron around c, cor-

responding to unit length.

Ca, stiffness of wing in detlection, correspond-

ing to unit length.

DEFINITION OF PARAMETERS USED IN EQUATIONS

the ratio of the mass of a cylinder of air of

a diameter equal to the chord of the

wing to the mass of the wing, both taken

for equal length along span.
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-Ur_ =: Zi).b2, the radius nf gyration divided by b.

S.
x_ = Mb' the center of gravity distance of tlle wing

from a, divided t)y b.

w_=_ _, the frequency of torsional vibration
around a.

r_=._ ._]b=_, reduced radius of gyration of aileron

divided by b, that is, the radius at
which the entire mass of the airfoil

would have to be concentrated to give
the moment of inertia of the aileron Ie.

a'._ _Mb'

01,5 = "_/

/('_,
,o,,=_ M

FINAL EQUATIONS IN NONDIMENSIONAL FORM

reduced center of gravity distance from c.

frequency of torsional vibration of aileron

around c.

frequency of wing in deflection.

On inU'oducing the quantities 3[_, Mz, and P,

replacing % and T,a from page 5, and reducing to
nondimensional form, we obtain the follnwing system

of equations:

?) C_ • "" 2 •._,,E, (1_o),,]

• ,, 1,, v 1 ., v

+ _[Mb_T,C_ . _r_1_(7s_'_,, _T_T,0)]+r[" 1 T_l +T,=,KvC(k)[rc_ ]_ , [1 \. Tmvf3+T..-1- "U_-;, _ ')b ,, " _- Lb bTU2-U_+ 7b _J_

V .. 1 " .VT 1 1 , .Chl

vC(k)['va , h, {1 a)&+ t3+

SOLUTION OF EQUATIONS

As mentioned in the introduction, we shall only have

to specify the conditions under which an unstable

equilibrium may exist, no general solution being
needed. We shall therefore introduce the variables at

once as sine functions of the distance s or, in complex

1
form with ]_ as an auxiliary parameter, giving the

ratio of the wave length to 2r tinies the half chord b:

a = aoe

and /_=hoe_(_2%)

where s is the distance from the airfoil to the first

ds
vortex element, _tt = v, and ¢, and % are phase angles

of t_ and h with respect to a.

Itaving introduced these quantities in our system of

{v,.V
equations, we shall divide through by [_) ,.

We observe that the velocity v is then contained in

only one t.ernl of each equation. We shall consider

this term containing v as tlm unknown paranieter [IX.

To distinguish terms containing X we sllall enlploy a

bar; terms without bars do not contain X.

We sliall resort to the folh)wing notation, taking care

to retain a perfectly cyclic ai'rangenmnt. Let the
letter A refer to the eoeftieients in the first equation

not containing C(k) or X, B to similar coefficients

', of the second equation, and C to those in the third

: equation. Let the tirst subscript a refer to the first

variable _, the sut)seript B to the second, and h to the

third. Let the second subscripts 1, 2, 3 refer to the

second derivative, the first derivative, and the argu-

ment of each w_riable, respectively. A,_ thus refers

to the coelticient in the first equatmn associated with

the second derivatiw_ of a mid not containing C(k) or
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X; C_3 to the constant ill the third equation attached to

h, etc. These coefficients _ are ns follows:

+)
°)

A.3 = 0

A_, = r_ (c- a) -
g 71"

1[- ,) /1 a)_T4 l_

A_ = 1 (7; + T,0)

Am=X"-a
g

A^_ = 0

Ah3 = 0

B:t r_ TT+(c_a)(Xn__ (:A_)K \_ r/

1 I

B.a= 0

B _r_ 1 Ts
_l -- _ -- 7r_

1

B_ = - _ _T_"I'__

B_3 = 1 (T5 - T4Tto)

B_t - z_ _ 1 T
-- g 71"zl

B_2 = 0

B^3 - 0

K

5':2= 1

C:3 = 0

C_,=x_ _ ! T,
K 7C

lr,

C_ = - _ "1+

C_=O

C^l =1 +1

C^._ 0

C_=0

(=A&

(=Ba,)

The factor 1 1 •or ki is not lnClLtded ia the_ constants, See the expressions for

the R's and I's on next page.

The solution of the instability problem as contained

in the system of three equations A, B, and C is given

by the vanishing of a third-order determinant of com-

plex numbers representing the coefficients. The solu=

tion of l)articular subcases of two degrees of freedom

is given by the nfinors involving the particular co-
efficients. We shall denote the case torsion-aileron

(a, _) as case 3, aileron-deflectioa (_, h) as case 2, and
deflection-torsion (h, a) as case I. The determinant

form of the solution is given in the major case and in

the three possible subcases, respectively, by:

Ro:+ iI.., R._+ iI_, R., + iI._

R,. + iI,., R_+ iI_o, R_ + iI,_

=0

and

-- Ro.+iI_., R_+iI._l
M_= R_=+iI_=, l_+iI_i =0

-- f¢_+iI_, R_+iI_^

M_"= R,_+iI,_, R_+iI_ =0

-- [_+iI°_, R_°+iI+o

Case 3

Case 2

Case 1

REAL EQUATIONS IMAGINARY EQUATIONS

R,.R_o - Ib.I_oi =0 I_.Ib_ + R_o/_] =0Case3

R+oR++ I+eI++ = 0 II+_I++ + R+o[_++ =u Case 2

-_,_fl_. I.d.. = 0 j + =0 Case 1

NOTE,--Terms with bars contain X; terms without bars do not contain X.

The 9 quantities R.., R_, etc., refer to the real parts

and the 9 quantities I_., I_a, etc,, to the imaginary

parts of the coefficients of the 3 variables a, /_, and h

in the 3 equations A, B, C on page 10. Denoting the

coefficients of _, a, and a in the first equation by p,

q, and r,

"+.+iI.+=l[-p+iq_+r(_v) `]

which, separated in real and imaginary parts, gives

the quantities R_= and Jr... Similarly, the remaining

quantities R and I are obtained. They are M1 func-
tions of k or C(k). The terms with bars /_., /_,

and /_ are seen to be tile only ones containing the

unknown X. The quantities _ and X will be defined

shortly. The quantities R and I are given in the

following list:
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1) 1 1+:...,-+ i,,
I l ,, , l,, ,

It',,,= ..l_, +_A,_,-+ _ l(a+.2)E'l,,(; -2 kl,,l_] (2)

1 l 1

¢ 1 7',, 1 " , 1 ,
'R_.=--I.,- k t-'E( 2-a)(,-kl`l {4)

- B,,, - k 4 (' (_)t/b_,= 1 Tv, ,

, 1 1 , 1 ,

/t_,,=--c<- _ 2E(2-a)(,-_ [,_ _7)

._= -- (_,_ + (3h.V- k 2 (; (9)R

1F)¢ 1 r,l ", 1.,-A.._]Lo= -_[_e_a+2) 1_, . (1l)

1 1 " , 1" ,, , 1 -'
Ia_=-]_lTr(a_-2)(I,fi" , 2h:T,,,(;) .lj: 1 (12)

1 )[ 1'\
/o,,= - _2[,_+_)F (la)

I_ tVTr, t l_a ) 1 .]+B.,I (14)

1 7"2...... 1-, _"

1_o=_12 (l-a)F+kG]+('...I (17)

1T,o(;) + C_I (18)

I<h- lk2F (19)

The soh, tion as given by the three-row deternfinant

shall be written explicitly in X, We are immediately

able to put down for the general case a cubic equation

in .V with cmnplex coeiticients and can easily segregate

the three subcases. The quantity D is as before the

value of the determimmt, but with the term contaiifing

X nfissing. The quantities Jl,,_, 31_, and ),I_ are

the minors of the elements in the diagonal squares

aa, bfl, and oh, respectively. They are expressed ex-

plicitly in terms of R and I under the subeases treated

in the following paragraphs.

A=.+ 9._.V A,,_ A°h

where Aao--R,,+il,, etc,

(lOml)lex cuDic equation in X:

:- ¢'.'.,..U.,_ i 9._.11,,._D_.b,M_)X :-l)=n

Case 3, (a, ;4):

Case 2, (d, h) :

Case 1, @, (_):

!._,,!_.V' + (!2nA_° : (.._.A.,i.Vq .U_--0

....., =Z,,M,._ =_ gA;:)

<,,\.= (', (=_,,;_=_(t,,.,=;'_'

p,,.\" = k:3l&. = _,-_,r,/ . _,. _.I,. ,]

and tiredly

(XXI

(XXll

(XXII1

(XXIV

v = 1 (_,.,_y
" ,_\ d" /

We ure at liberty to introduce the reference plll'lllll-

eters _, and r,, and the convention adopted is: _ is

the last w in cyclic order in each of the subeases 3, 2,
and 1.

Then _-L,=( _,!r. "]'and _.t,+:= 1, thus for
\6dn 4 irnl I,]

() 02al. ° 2_',,._ :_,...=(- - ] a.d (.:,= i
\w_r_/

\ w,_ /

('ase 1, _-2a=( w_, _2alld () --
'.wM'_/ "'"- ]

To treat the general case of three degrees of free(h)m

(equation (XX1)), it is observed that the real 1)art

of the equation is of third degree while the imaginaw

l)art furnishes an equation of second degree. The

problem is to find values of X satisfying both equa-

tions. We shall adopt the folh)wing procedure: Plot
1

gral)hically '\" against ]_ for both equations. The points

of intersection are the solutions. We are only con-
1

eerned with positive values of _. and positive values of

X. Observe that we do not have to solve for k, but

may reverse the process by choosing a nuntber of

values of k and solve for X. The plotting of X
1

against /_ for the second-degree equation is siml)le

en'ough, whereas the task of course is somewhat more

laborious for the third-degree equation. However,

the general case is of less practical importance than

are the three subcases. The equation simplifies c(m-

siderably, be('oming of second degree in X.
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We shall now proceed to consider these three sub-

cases. 13y virtue of the cyclic arrangement, we need

only consider the first case (a, /_). The complex

quadratic equations (XX]I)- (XXIV) all resolve
themselves into two indel_endent statements, which

we shall for convenience denote "hnaginary equa-

tion" and "Real equation", the former being of tirst

and the latter of second degree in X. All constants

are to be resolved into their real and imaginary parts,

denoted by an upper index R or I, respectively.

I.et M._=Mn.°+i.lI_._ and let similar expressions

denote .'tl0_ and .11_^

Case 3, (a,fl). ,Sel)arating equation (XXII) we obbdn.

(1) Imaginary equation:

(.q.l_s+ (2_I..) X + Mr_h=O

MZ_h

(2) Ileal equation:

(2..o._X2 + (_t.R_T gJ?a.)X + MR_.-O

Eliminating X we get

_ (M*_^) '_- (_)..Ro_-t- _#¢..) (P..I _ + _).fl.o) M_,

By the convention adopted we have in this ease:

w.--o_, " \oJo] \r0/'

Arranging the equation in powers of _. we have:

+ [-- JI_.R_.I.o + M%_IJ] - (/

But we have

(M'_) _- M'_ (R_.l_o + I_.R_)

Finally, the equation for Case 3 (c,, fl) becomes:

l_.2(.11'_I _-- 3 I*_R_I_) + l_.[ -- 31_. (ll_I_. + I._R_.)

+ 2M"_,I.oI_I + 3P¢_I_ 2- ,lI'_R..I.. = 0 (XXV)

where

The remaining eases may be obtained by eyelie

rearrangement:

INSTABILITY AND THE MECHANISM OF FLUTTER

Case 2, (3,h) _,:_o_ ..a--_o_ ? r_2 Q_ 1

_2_(M_.=IJ-- AI_R_I_) + _[- 31_.=(R_I_ + I_R_)

+2.'iI_:_[_I_,,] + M_.l_s 2- :lPo=R_flo,_-- 0 (XXVI)

where 31R_.= R_R_,,-- II_R_-- I_I_,, + I_I_

.II'_--R_I_,,R_,,l_-_ I_I_-- I_R_

Case 1, (h,a) (w.) ,,2

_._(.ll_l.. _ .II_R_.I..) + ¢&[-- M_(1Lfl°_-'. I_R._)

.) , N _k_ /¢ 2 I __+.M_fl¢_I_o] M,,flo, -3l,,flL_I_ 0 (XXI'II)

where AI'_ : 1_1_,,= R_oll.,,- 1_,,1_. + 1.,I._

Equations (XXV), (XXVI), and (XXVII) thus

give the solutions of the eases: torsion-aileron, aileron-

deflection, and deflection-torsion, respectively. The

quantity <2 may iinmediately be plotted against

1
for a0y value of the indet)endent paranleters.

The coefficients in the equations are all given*in terms

of R and I, which qu'mtities have been defined above.

Routine calculations and graphs giving !_ against
1

are contained in Appendix I and Appendix lI.

1
Knowing related values of (2 and Ic' X is immediately

expressed as a flmction of _ by means of the first-

degree equation. The definition of X and fl for each

subcase is given above. The cyclic arrangement of

all quantities is very convenient ,is it permits identical
treatment of the three subcases.

It shall finally be repeated that tim above solutions

represent the border case of unstable equilibrium.

The plot of X against -q gives a boundary curve between
the stable and the unstable regions in the Xl_ plane.

1
It is preferable, however, to plot the quantity _.2 X

instead of X, since this quantity is proportional to the

square of the flutter speed. The stable area can easily

be identified by inspection as it will contain the axis

1 )_.=0, if the combination is stable for zero velocity.k_

LANGLEY _[EMORIAL AERONAUTICAL LABORATORY_

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS,

LANGLEY FIELD, VA., ._[ay 2, 1934.
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APPENDIX I

PROCEDURE IN SOLVING NUMERICAL EXAMPLES

(1) Determine the R's and I% nine of each for a

major case of three degrees of freedom, or those per-

taining to a particular subcase, 4 R's and 4 I'.s. Refer

to the following for the R's and l's involved in each

case:

The numerals 1 to 9 and 11 to 19 are used for con-

venience.

(Major case) Three

degrees of freedom

1 R_. 1._ 11

3 R_,, I_ 13

4 Rb. 1_. 14

5 Rb, I_ 15

6 R_, lb_, 16

7 Re. I_ 17

9 ll_h l_h 1_._

(Case.3) Torsional-

aileron (a, B)

1 R.. I.= 11

2 R_ 1.0 12

4 R_. Ib. 14

5 Rb_ I00 1 5

(Case 2) Aileron-
deflection 03, h)

5 Roo I0_ 15

6 R_., Ibh 16

S R_ I_ lS

9 R_h I_ 19

(Case 1) Deflection-
torsion (h, c_)

7 Re. I_. 17

9 R_h I_n 19

1 R.o Io. 11

3 R,,h I_h 13

It has been found convenient to split the R's in two

parts R=R'-kR", the former being independent of

argument 1. The quantities I and R" are func-the
/¢

tions of the two independent parameters a nnd c ,mty. _

Tim formulas are given in the folh)wing list.

1 ) •

ll](T___TI.) 1 (a_ 1 '.., 2.. :i

W'o : U -+ i: j

1T,,I[1 _)<; FItl"b_= k r' [\2 _.] (;4)

I ]_2 (; (6)R"_, = T"

R%. 1 9 [[ 1 _ a )G---k] (71

P" _= k';(7"a-2T'F) (_)

1 2 (; if,l)
R"¢_= - k

( 1_!{1 ) 1.,/1I_=-'2 o+2]!\ _ -a f"+_,1+_-. (_1)

I _ 1 , ,,2_,

]

I.,,= '2(a-+-I)F (13)

i T,,/1 " 1 T4) (14)

1 ( 1 --c_) :_'_
Where p = 3

2 , I
I_=,_ T,.,(J',_I"+_ T, oG)-- T4T,, i (15)

I0_='1-;-21 ,' (16)

/1 'F' kG} +1 (17)

1[ ,. . 2
I¢_=-.,(7,_P + ,: T, oG)--7;} (18)

7r_\ h:

I_ = 2/" (19)

The quantities 1 given in the appendix and used in the following calculations
I

are seen to differ from the 1'$given in the body of the paper by lhe factor _ . It

may lm noticed that this factor drops out in the first-degree equalions.
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Choosing certain values of a and c and employing

the values of the T'._ given by the formulas of the report

(t). 5) or in table I and also using the values of F and

(; (fomnuhts (XII) and (XIII)) or table II, we evaluate
1

the quantities I and R" for a certain number of k

values. The results of this ewduation are given in

tables IlI and IV, which have been worked out for

a=0,--0.2, an(l--0.4, and for c----0.5 and c=0. The

of _. is froIn 0 to 40. These tables save the workrange

of calculating the I'._ and R"'s for almost all cases of

practical importance. Interpolation may be used for

intermediate values. This leaves the quantities R' to

be determined. These, being independent of _, are as

a result easy to obtain. Their values, using the same

system of nmnbers for identification, and referring to

the delinition of the original independent variables on

pages 9 and 10, are given as follows:

r_z 1

• • :/'7 T,
R',,s=-r_--(c a) a_ + +(c--o) (2)

g K 7r 71"

R'_h = - a'. + a (3)

R'_,=same as R% (4)

p, re2 1_ 1 T (5)
¢ b_ = -- K- -_ 7("2 * 3

R'_= - x__+ 1 TI (6)
K 7F

R'_=same as R',,h (7)

R'_,+=same as R'_a (8)

lt% = -- _ - I (9)

Because of the synmmtrical arrangement in tile

determinant, the 9 quantities, are seen to reduce to

6 quantities to be calculated. It is very fortunate,

indeed, that all the reinaining wu'iables, segregate theiu-

selves in the 6 values of R' which are independent of _,

while the more cmnplicated I and R" are functions

solely of c and a. In order to solve any problem it. is

therefore only necessary to refer to-tables III and IV
and then to calculate tile 6 values of R'.

The quantities (l) to (9) and (11) to (19) thus
1

having been determined, tile t)lot of Q against _, which

constitutes our method (;f solution, is obtained by

solving the equation a_2+bl_+c=O. The constants

a, b, and c arc obtained automatically by computation

according to the following scheme:

Case 3

Find products 1.5 2.4 11.15 12.14

.]lR_h= 1.5- 2.4-- _(11.15 -- 12.14)Then

Find products 1.15 2.14 11.5 12.4

Then 31I_n=1.15-- 2.14 +11.5--12.4

and a=,_IRe^(15)2--]llt,^(5.15)

b= -- _ll_h (2.14 + 12.4) + 3/n_n(11.15)

c=31n_^(ll)Z--31*_h(1.11) Find _,

. 1 a=(15)+ll
Sohmon: A; = --- ,11+_ -

Similarly
Case 2

5.9 6.8 15.19 16.18

,IlR,_= 5.9-- 6.8 - _(15.19-- 16.18)

5.19 6.18 15.9 16.8

:11'_,=5.19--6.18+ 15.9-- 16.8

a= 3.iR,,(19 )2-- _ll*_(9.19 )

b=-- 31z,_(6.18--16.8)-- 2_lIno,(15.19)

c=M'_,°(15)2--M*,_(5.15) Fill a_

i=?a(19)+ 15
X ,IP,_

and
Case 1

9.1 7.3 19.11 17.13

,l'lnb_=9.1 --7.3 -'_2(19.11 -- 17.13)

9.11 7.13 19.1 17.3

3/*_a=9.11--7.13+19.1--17.3

a =,llRb_(11)2--31tba(1.11)

b = - .'l/'_z (7.13 ÷ 17.3) + 51'%(19.11 )

C=31R_(19)2--31I_(9.19) Find _

1 _h(ll)+l 9
_7_=- M_

i/ _oja r a 2

(-_a is defined as _)

for case 3;

(+%2_ is defined as -- for ease 2; and
\o_/

_ is defined as ¢0_r, for ease 1.

1..( ,'k _'
The quantity X is \boj,+ - by definition.

Since both _ and-1 are calculated for each value of

1 1 1
_, we may plot _2 _ directly as a function of f_. This

quantity, which is proportional to the square of the

flutter speed, represents the solution.
\I/'e shall sometimes use the square root of the above

1 _T _i'_V, and will denote this
quantity, viz, k "_ A" = b_o,r,
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quantity by F, which we shall term the "flutter factor "

The flutter velocity is consequently obtained as

bL_ rFr

3_/K

b¢orr,

Since F is nomlimensional, the quantity _ must

obviously be a velocity. It is useful to establish the

significance of this veh)city, with reference to which

the flutter speed, so to speak, is measured. Observing

_rpb "
that K= 3[ and that the stifl'ness in case 1 is given by

= / _ this reference velocity may be written:

• bo_,.r_ 1 /(7
_"=-,_ = bV_. or

_rpeR_b2-- C,,

The velocity cR is thus the veh)eity at which the total

b
force on the airfoil rpea_2b attacking with an arm ,_

equals the torsional stiffness C, of the wing. This

statentent means, in vase 1, that the reference velocity

used is equal to the "divergence" velocity obtained
with the torsional axis in the middle of the chord. This

velocity is considerably snmllcr than the usual diver-

gence velocity, which may be expressed as

1

v/, = va 1
_+a

1
wtmre a ranges from 0 to-2 We may tiros express

the flutter velocity as

_'F = I'R JL'

In case 3 the reference velocity has a similar signifi-

cance, that is, it is the velocity at which the entire lift of
1

the airfoil attacking with a leverage _ b equals numeri-

cally the torsional stiffness (_ of the aileron or mowlble
tail surface.

In case 2, no suitable or useful significance of the

reference velocity is available.

TABLE I. VALUES OF T

• c-I

-_ .... )o"
7'_ ............. o

T_ _. .

7'7 ..... I 0
7'_ ..... : 0
7'_0 ...... 0
TII ....... 0
7'1,_ - . 0

c=_i c=O

0.12.59 -0. 66fl7
-0. 210;_ - 1, 5707

-- 1 57C_
! --: 03_ --3, 4674

--0 2103 --1, 5707
I .0132 --, 1964

• 0903 --. 3333

_132 2.57(_• 2999 3. 570_

• 070fi0 . 4292

c=--_ c=--i

--1.B_7 --3.1416
--4. 8356 -- 9, 8697
-- 3. 8375 11. I034

--2.5274 i --3,1416

--0.9503 -- 9. _,,697

--4. Y,3.St', --9 _¢697--1. 1913 --3. 5343

--L 4_._05 I -3. 141_i

2.9604 I 314141
6.._5:_b [ 9, 424_

L 2990 I 3 I_16

TAI_LI,; I1. -TABLE OF TttE BESSEL FUNCTIONS Jo, d_
Yo. Y_ AND TIlE FUNCTIONS F AND G

l. lk) JdJ_+}%)+Y_(Y,--Jo)
(dl+ ]%))+( YI-d_)_

- (i(k)-- ,j_+i,0)_,_(},_j_) _

k / ,1o _ J_ }'o }'_ F -- G

1:_)3 -.27_7 -.z_2 -. 1760 ._1_.
4 i _ 3!)72 -. _),_0 -. O170 .397_) .5037 ] 0305

, ", 72.)_ .5767 - .5104 -. 1071 .51_ .0577
l I .7_;52 .4401 .0_2 -, 7_13 . .5395 .1003

• 91211 - ,_flCs5 - 1 2604 I37_¢

i ') 9:_,5 12423 -. 4444 -- 1. 4714 i fg)30 151
:l_:_ ,977g .14_3 -. a{172 --2. 2_29 . (i6_) 1840

/_ . _375 04_9 -- 1 5342 - 7. 0317 _457 1626.05 L ...... 911 132
• 025 40 ..... 9_5 o_)o
0 _ . . I 000 I
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TABLE III.--VALUES OF R

__ o 14o 14 _4 L_ i lh _,_ 2 2t_ I 3_4 5 ID 2C 40

"-- - i I ! I ! t

]4 0 --: 001;_! --] 00_411 --: 00_67 --: 0:1_ :'12595 i --: 1'_J6 -: 3'_:3ils :5:_97,_- :85_6 ! -'17 585401-3:;07741 -_7: 20_70! -73: 35520! -z,o_':_'_0
..... ..... I ___ , ...... i ............ ]

I 0 O -- 00 _ -- _0452[ -- 0020 i -- 9475 -- 800 -- 2_J384 -- 56223 -- 8722 --143983 --284988 --7,40__[_ _2
0] --.2 0 .01X)3(I .0(X_i .00184 .L_179 .01922 .022 .01_29 --.0141_1 -.0_031 --.2_3517 --I.29480 --1024590 --5249020 --241.3664

[ --. 41 0 .002221 .0(_)17 .01388 95531 .2181H I .33914 .59499 ,84414] 1. 30365 2. 25914 4. 87340: 17. 80470[ 67, 38320 259. 064s

o 6 •0_:1 (,,2_,1 .,_151d.0193211_,il ._761 .12M ,,7607 _2_05-•0_001 -.93535,-10 48070i --59 16180]--268.7236
05 -- 2 0 0024 005951_1 033fi 05278 2(_ 25] 3065 530112 , 73222 I. 1112:3 181135 3. 55230 10. 14740 31. 49020 101. fi340

--. 4 0 .01_347] .009157 .02l 76 08656 343t 1[ .53463] 9433_i 1. 34762 2. (_J1907 3. 66913 8.0t_2357 30. 97980 120. 89760 475. 5592

0 0 --.011125 --.00345 --,00763 --,02890 .10030 --.14590 --.22470 -- 302011 --.41,500 --.£_000 --.94300 --1.62600 --2.64000 --3.6000

R".a Q) --.2 0 .01:O75 -,00207 -.00426 --.01734 .fl6018 -,(_736 -.13482 -,181.'_) .24900 --.36000 -.505807 --.97560[ --1.5_400 --2,16L_

--.4[ 0 -.01201 - 0(03341 - 00502 - { 003 -- 02006 - 11251m - (L_231i .(14012 - 05015: --.0(i_i_31 --.10030 --.2(}000 --.401201 --.8024

.... 0[ 0 .00077 ,00214 i .00482 .01949 . (_fl55 . IZ_21 .2;1541 .35t110 56143 1050_ 2.54920 11.66330 49. 957011 2ffd. 7520

0 --2 ! 0 .00(_0 .002_23 .00503 .02027 .0,_,32n9 13219 .24169 , :1_u.3_i 572761 I. 06650 2,57490! 11.70770 50, 03000 20_. 8500

.... -.4 0 .0__4 _'°°_ _ _523 .021_ .c_,_ _ :!3, __4__9,] _,,*_!I ._410_ !:_'!l 26_!9 11._22o! 5o.aoleo 2os.949o
R;' b_ 0[ O 000 ?, 0(]0351 0_179 0032 0 _27 112 2[ f1878 .057fi7 0(3248 . 17296 .4107",_ 1. 921 l0 [ 8. 22870] 34. 3850

0.5 --.2 0 .00013! .00037 .01h'183 .0E_34 ,01372 .021771 .0:t1181[ .05993! .09434 . 17568! .42413 1.92_40: 8. 240604, 114.4007

I - 41 9 ._0 4 0..'03_ .00(_ .003471 • 1 417 224 I , I]4 _4 06039[ 013t 2 17_.36 ' .42_37 1 935751 8. 25246 34. 4169

--! _ .0012,_! .1_13,1:_ .0077_---_ .0310_ 1264w2 .ll_3_ I .35_0_ .5241_ ._ ¢ 5 _: , 549_ 1,5 351_._ 640224--_ 0' 263 234_
R'%a

# (_) 61 (E_31 .ta_0ODS" ._lm_001013 00"85 0'tl70 049_0 (_93 r) 130110 .'104411 _tiq401 _,lq'0l .......355050 14...............56740' 5931_ _,

0 01 .000171 . (EO'17 .00i04 .00394i .0137U .019_9 .03177 .04125 ,05_169J 18 9 . _ ' 222 1 .36062 .491_
R"b_,

5 ('; _] .00003l "*_i ._11,_ .0_t5l t_122t_ .0O328 01)*, .01_0 .01,_34] ,13_0 .02m 6:_159 .0_940 ._/,!
0 0[ 0 2_1 03 32i ,07058 ,2_510[ 7f 30 877 0 3 4467(3 5 2600 8 2`2000: 15 37451t 37. 3Z_00 1711.7_i00i 731. 44000 3, 056 401_0

R"e_ (I) -- 2 0 0 78 _ 03270 07362 290_4 2 54 93540 3 53860 5 24CP_0 8 38_01[ 5 I 440 37 70020 7 4 401 732 49600[ 3,057 840(
--. 4 0 .0122_ • 034Ot[ .076F_ .30_ I. 259501 1, _g_60 3. 93050 5. 36760 8. 55200[ IE 85440 38. 07740 172. 01_b0[ 733, 55200 3, 059_ 2_01_

I¢"_a

<') (')l o oo_5o _1o_,oI 014=_ / 057g{} 2(x_)0 _JI20[ 44{140i 6040(I, _300() I I 201Xn I 1 _600 3 252o0: 5 2_po i 7 2000

.5 ( .ooo011 .1/184oI 04],r'_1 I 810 _ .00850 45]1 2 0.5}2)[][ t X_24 4 1_5:'91 0 244 8 25 51.101 103.67300 444 80401) / l 88 0_0(1

Independent of c. _ Independent of a.

TABLE IV.--VALUES OF 1

I i
i

0..36855 O. 44030 0 50050 0, 60275 1. 70320 .

• 55464 .59472 1. 32940 1. 90140
82938 .85186 ,87059 L 07300 1, 26400

.2(')645 .32132 I .3e_T)4 .44090 1. 31213 2,10476
• 44474 .47761 i .6(,u185 .55300 1. 54773
• 62"299 .63395 ! .64303 ,65008 .82313 ,99065

• 20914 . 29514 , 35951 . 65973 [ 1. 05124

• 2,5_,94
• 3689 I

--. 5,MIO

4O

3.01750
2. 45470

1. 44630

2. 85063
2.00065
1.14163

2. 22869
• 22,712 I .31054 ,34916 .52929 ]. 47067

.31813 [ .32594 .39884 , 47714 . 71260

--. 57880 [ --. 90300 --. 62450 --. 66560 --. 727(')0 --. 84570 --, 94100 --. 96500
--• 3472_ --. 37470 --. 399110 --. 43650 --. 56460 --. 579@0
--, 11576 --. 13360 --. 14552 --, 18220 --. 19300

. 37404 . 1151"101 .34204 . 19172 --• 06980

.38918 .37249 35911 ,08255 --, 04344

. 40432 . 38A96 • 37617 . 23793 . 10744 --, 01707

I .06974 .04168 .01960 --. 00327. 07171 .07009 .07145. 07420 • 07270 . 06925 . 04548 . 02370 . 00'295
.07205• 07668 .07529 .1174 I6 .04928 .02779 .00728

. 31090 , 29721 , 2_125 , 26872 i . 23524 . 10_06 . 05979 --. 04333
. 041195 • 03930 , U3904 . 03760 , 03386 ! , 03060 . 0'2200 . 00845 --. 00470

• 07570 • 07910 . fie,530 • 11550 . 12440 . 13180
01247 • 01357 , O1405 01903 . 02117 . 02171

1. 26290 1. 11940 ,99900 .749,50 ] .46500 -- 140630 --3. 3fi9_)0--5. 23500
-- 3. 00460 --4, 849001. 48454 1. 354)92 1. 04430 .73100 -- 1. _1802 I

I --4. 463(_l, 70618 1.5_244 -- 72974 --2,64020

._,9150 ! .78100 .69110 .52840 I ,27380 --1.20010 -_-.7._-1-4.29_o

.241}10 [ .15510 --,05150 I --.2_0311 -- 2. {`_1380 I-3.79Ol0
I

1.10820 [ 1.1570(I I 2{_60 124900 [ 1.33000 1.69140 1.82200 1•93000
I

t Independent of c. ln(lependent of a.
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A number of routine examples have been worked out

to illustrate typical results. A "standard" case has

been chosen, represented by the following constants:

K=0.1, c=0.5, a=--0.4, xa=0.2,

1 1

ra2=0.25, x_ = ,q-(_, r_'= l(i0

on,, ¢z, w^ variable.

We will show tile results of a numerical computation

of the three possible subcases in succession.

/Go

/20

1)..

80

4o

APPENDIX II

NUMERICAL CALCULATIONS

The heavy line shows the standard case, while the

remaining curves show the effect of a change in the

value of x_ to I and
1.
160

Case 1, Flexure-torsion (h, a): Figure 9 shows again

I" l-I .oo(_;

-.004 '_':,[ !--_-- '- I

FmuRz 7. Case 2. Alieron-delleetion _, tO: (al Standard ease (b), (c). /d) indicate

dependency on z0. Case (d), x¢- -0.004, reduces to a point.

1
the .(& against k relation and tigure 10 the final result

( v )" "=, _ against 9..=( _' _ =4(_'"'} '

Case 1, which is of importance in the propeller them'y,

has been treated in more detail. The quantity F shown

in the figures is "V7 a_,r=b

Figure 11 shows the dependency on _0_= 5_;
COa 0)2

figure 12 shows the dependency on the location of the

axis a; figure 13 shows the dependency on the radius of

gyration r,=r; and figure 14 shows the dependency

on the location of the center of gravity x, for three

dillerent combinations of constants.

EXPERIMENTAl, RESULTS

Detailed discussion of the experimental _ ol'k _ ill not

be given in this paper, but shall be reserved for a Inter

report. The exl)eriments given in the following arc

0 ./ .2_ .3 .4 .S .6 .7 .O .9 /.0
Ilk

FIGURE 5. (?use 3, Torsion-aileron (m B): Slandard ea4e. Showing i!_ against _"

Case 3, Torsion-aileron (a, fl): Figure 5 shows the £_

1
against _ relation and figure 6 tile final curve

F=,(-,.'} ,_.gainst £.=(w'r"_==4()(°_"'_2

16

0 20 40 60 80 /00 120 /dO /80 /80
D._

l'mtr_E fL--Case 3, Torsion-aileron (a, B): Standard ease. Showing flutter factor

F against l_,.

Case 2, Aileron-flexure (¢, h): Figure 7 shows the

1 _ (v)'£_ against _ relation and figure ,_ the final curveK w,,b

,,g,ti,t..t ". (_<")_-- ' ('_"Y
"" -',, w,, lili)\w,,]

¢ It is realized that considerable care illllst be exerosed to get these ("urves reason-

bly accurate,
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restricted to wings of a large aspect ratio, arranged with

two or three degrees of freedom in accordance with the

I

/.4---*

/.2

N

'/'0-- i_

.8---

.6--

i

0 .002 .004 .006 .008 .010 .012 .014

.0. a

FIGURE 8. Case 2, Aileron-delleelion (/t', h): Final curves giving fhltter factor /"

against R_ corresponding Io eases shown in figure 7.

theoretical cases. The wing is free to move parallel to

itself in a vertical direction (hi; is equipped with an

/20

O-- 2 ,4 6 8 /0

L/k

I"[GUliE !1,- (_;lSp 1, Flexllre-I{_r_iOll (h, or): _tandard ('a_l*. _lm_ iI_g _ _ agains _.

.xis in roller beltrings at (o) (fig. 2) for torsion, and
with an aileron hinged at (c). Variable or exchange-

able springs restrain the wing to its equilibrium

position.

0 4 8 12 16 20

l).a

FIGURE 10.--('ase 1, Flexure-torsion (h, a): Standard case. Showing flutter factor

F against _t_.

We sball present results obtained on two wings, both

of symmetrical cross section 12 percent thick, and with

chord 2b= 12.7 cm, tested at 0 °.

FI(}URE II. Close l, Flexure-torsion (h, _): Showing dependency of F on_--_ * The

upper curve is experimental Airfoil with r= _ a = -0.4; t = 0.2; 4_=.01; _ variable.

Wing A, alundmlnb with the following constants:

1
x =4[6' n.... 0.4, x._=0.3l, 0.173, and ().0a8,

respectively ;

r.::-0.33 and w.=7X2_r
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Wing B, wood, with flap, and the constants:

1
_=]_, c=0.5, a= --0.4, x_=0.192, r,2=0.178,

x_=0.019, r_2=0.0079, and _ kept constant
=17.6X2r

The results for wing A, case 1, are given in figure 15;

and those for wing B, cases 2 and 3, are given in figures

16 and 17, respectively. The abscissas are the fre-

quency ratios and tile ordinates are the velocities in

cm/sec. Compared with tile theoretical results calcu-

lated for ttle three test cases, there is an almost perfect

3. O0

2.50

I

/

2. GO

i / ,-I

LO0, L" _ I

.50 ...... t

0 -.2 -.4 -.6

b'lOv_RE ]2.--Case 1. Flexure-torsion (h, _): Showing dependency of F on location

ofaxisofrotatioua. Airfoflwithr- _-:x=0.2; 1 ._1 IK _-, _--_, a'variable.

agreement in case 1 (fig. 15). Not only is the mininmm

velocity found near the same frequency ratio, but the

experimental and theoretical values are, furthermore,

very nearly alike. Very important is also the fact that

the peculiar shape of the response curve in case 2, pre-

dicted by the theory, repeats itself experimentally.

The theory predicts a raT_ge of instabilities extending

from a small value of the velocity to a definite upper

limit. It was very gratifying to observe that the upper.
branch of the curve not only existed but that it was

remarkably definite. A small increase in speed near

this upper limit would suffice to change the condition

from violent flutter to complete rest, no range of transi-

tion being observed. The experimental eases 2 and 3

are compared with theoretical results given by the

dotted lines in both figures (figs. 16 and 17).

The conclusion from the experiments is briefly that

the general shapes of the predicted response curves re-

/.50

F

1.00

2. O(

.50,

N
li " " 7_

\

\

\

\

0 .5 I.O t.5

Jr

FI(_URE 13 Case 1, Flexure-lorsion (h, a): Showing dependency of F on the radius

of gyration r_ = r.

1. wl 1,
A, airfoil _ilh a= -04; _--_-, z=0.2; _, r variable.

B, airfoil with a= --04; _ I; /=0.2; _J--1.00; r variable.

i

I
2.50 ......

1
[

2. O0

,/
Y

/.00

C " -" -_. = 1,4 I,(:. Ol

.50 -

i \
[\

0 .2 .4 ,G

3t'at

FIGL'aE 14 --Case I, FIexure-torsion (h, =): Showing dependency of F on Zo, tile

location of the center of gravity.

1 . ! , _l l .

A, airfoil with r= 2' a=-04; _=400 _,_"'i 'x variable.

B, airfoil w r 1 ;a=_04. _=l ;w_ ] :x varialle
2 ' 4 w_ 6

C, _ih*,(,,l "_,il h F-- :, .... 04_ ,_ lljO: _-4_--']: _t- _..[_ria_lle.

peat themselves satisfaetorily. Next, that the influ-

ence of the internal friction 7 obviously is quite appreci-

; This matter i_ t hP stll>je£,t tjf a ll;ll)er now in prellaratiotL
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able in case 3. This could have been expected since

the predicted velocities and thus also the air forces on

the aileron are very low, and no steps were taken to

eliminate the friction in the hinge. The outline of the

stable region is rather vague, and the wing is subject

_t

2O

/0

0 .2 .4 .6 .8 1.0 1.2 L4

¢.,,)h/ _ct

FIQUItz 15.--Case 1. _'lng A. Theoretical and experimental curves giving flutter

velocity v against frequency ratio _, Deflection-torsion.

to temporary vibrations at much lower speeds than

that at which the violent flutter starts. The above

experiments are seen to refer to cases of exaggerated

unbalance, and therefore of low flutter speeds. It is
evident that the internal friction is less important at

larger velocities. The friction does in all cases increase

the speed at which flutter starts.

. I ExpeHment°/l"v'_ _x,_ =0-0/ N I

II
0 .2 .4 .G ,8 I.O 1.2 /.4 I,_q L8

FlOraE t6,--Oase 2. %Vlng B. Theoretical aud experlmeDtel curves giving flutte/

eloctty v against frequency ratio _-$- Aileron-deflection (fl, h).
w_

,o [ G/_]_
0 0.4 0.8 1.2 /.G 2.0 2.4 2.8

FIGURE 17.--Case 3. Theoretical curve giving flutter velocity against the fre-

quency ratio _. The experimental unstable area is indefinite due to the im-

portance of internal friction at very small velocities. Torsion-aileron (a, B)
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APPENDIX III

EVALUATION OF ,.,o_

,_' ,, (x--xD2+ (Y--Y'?", d&1o_, (,r_ xO_ + (Y + YD"

;l xldxl-2clog 1--xc-- Y'v' l--c - 2y.(x- c) _(x- x,)

+ ;1 zldxl dx_-)--- _ =j' ."vl--xl (x--xd ,, t £-JC

_" d& IPutting 0]
+ xa iZ:_i ,rf£;i _" x,=cos

X 1 --X COS 8+ X"I 7"ra sill 0 cos e= I
=--0- _x21og - cos O-ix- ,.,,_e=_

x loc, 1 -- c.r-_- xl2-x"_;"l---c ''
=°°s-'c+ _i__ °- c-x

X C -- X

=cos-'c + _ log 1 -- c.r-- _>'1--£i41---c'_

2r --2c log (l--cx--uliT-X"'q'l---t:'2)+ 2c log (x--c)

--2_/1--x 'acos-¥--2x log (c--z)

+2x log (1 --cx- _'i:_2x 1 --d)

(1--C,r-- -C72," 1---_C)'_
=2 (x--c) log \ ..... .};Z c .... /

-- 2 -_/i--- x'_ cos-tc

EVALUATION OF _a

_,= f' {log[(x--&)=+ (Y-- !h)q

--log[(x--x02 + (Y+ YDq} (x,- c)d-r_

_ (x, _c) 2{logi(,r_ x_)2+ (Y-- YOq

--log[(x--x,)2+ (y+Y,)q}]_

+y;l (x_-c) _ dx_y,(*-*,)

l(xl_c)2dx I _'l (x _c)2dxi ((cos O--c):_dO

&=cos O, y_=sin 8, dx_=--sin ado

fl(xi__c)'dx, ;1 dO
,L _(x_ =sin O+(x--2c)O--(x--c) 2, x--cos 0

F <!0 f, d(_+0)._
._ ,r-cos 0= .I_ x+cos Or+O)

1 1 --,r cos 0-- _,I_X _ sill 0 I _o_ 0=1

-- -vl --# log a;--('OS 0 cos O=c

= _,=- .,/log -_--log-il--x'L.. z-, -- 72-b - J

1 1 t_ ----= -_: .... m_ (1--cx-- _ 1 --x%_l--c:)
3/1 --,r"

+ _ ..... log (,r--c)
_/1 --x e

¢_=-¢1--x'[--- Vl--c --(x--2c) cos k'
e I.-

(x-- c I _

+ l_:21og (1--c*-- 1---'r'2x iZ?('_)

(,r-c)" "]- - ...... lo<, (x- c).' d,2_,.1--

2rr¢,,____,.1_.c2 .l__.r: cosl('(x'--2c)_.l--_"

+ (x--c " log (1 --cx-- -_ i ",r_ ; 1 2_d)

-- (z--c:2 log (x--c)

EVALUATION OF 7":_

-- cos % f (*-- c) (,r- ::(') _1 - ,r: dx

+ !z4cP- log (1 -- cx-- V 1 --/" _,]_ c")

1 r' ._ /_2_.., (,r_(,):_d *

--j'(.r c) a log (x--c)dx; z=cos O, dx=:--sin OdO

?_ fiZz(,r--c)dx-- ,'l_cif CoOs O--C) sh' z£TdO

q cos-' c (cos O--c)(cos --2c) sin: OdO

+_'4 c)_ log (l--c,r-- _.'l'x_l_c _)

_! c)',i,+'_ f( c°s °-c :_''°4 j'(,r--

(_--C)' h,g (x--c)+ l f (x--c):'dx4

2_r _ _(,r--c)dz ..... cos-'c j'co# OdO

.-- ,' _ ' .

+(_{_ COS lf.'- -,:"[--C2 +_-2).f COs3 OdO

+(c<,,_ '_--'-'(_co._-'<+< _,.__ a_<,'K-7;)i'_o,_'0d04 d

3c_ ' 1 _'-') l'ct,s OdO+(i -- 3<'''t's _''' 'i--c_+ 4 .

-- v c:_,,,1-2-{'_'_ F

+(2c2 cos -'c--c , l--c'---- _----)JdO
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=--c°s-¥[ c°s3 "sin04 t-_3 (0d sin eoc°s 0)_

+3(3c cos- Jc -- _3 _/_ c_)sin 0(cos 2 0+ 2)

+(cos-¥_2c _ -I --c_"l--cZ'_{O-sinOcosO_

+ ( -- 3c cos-_e + _,,"1_--_/-'_- 3e_ %"/l_d'_ •v4 ] _m 0

-- c'%,_- c_\
-}-( 2ez cos-¥--cv'I--c 2 _" -)0

j 3 9
=cos c(_,_+ _ '_-3,_) = -S ,_cos _c

27r '

T f ¢_(x c)dx

__ [-c3_"! _c _ . 3 co._'-_c . 3c#'1_c _-1

cL 4 * + s -J
v'l --C _7 ,

--E c cos-'c-- _ " J(c2,,'1--c2+2,,"i 5__)

--( c°s-_c-2c2 c°s-lc-- 4 )\, 2 ]

- (- 3e cos-'c + -v'i =-c _+ 3c_ _,"1- c_'_ ,_-c_

--( 2c2 c°s-Jc--c_'l--c'2-- -4 ) c°s-_c

i r-3 1 2 _ 27

• _ ¢3 : • ,

+ _ll'l'l -- _2 ¢0S ¢[-4-_"{-C--c3--'2C__2__C3+3#_C

Ca C7, e'2(1--¢ 2) , (1--C 2) C2(1--(!2)

_-_Jt.- 4 + Z,2-- s

.= 1 1 2
--(I--C2)--3C2('--C2)4 (8+C2) (c()s c)

+cvl--c zoos lc (7+2cZ)_(1 d) (See _4) (=T3)
4

EVALUATION OF T_

2 (x-- e) log

--2,I/t--x2 cos-lc]dx=Ts=--2 f (x--c) log (x--c)dx
t_

+2/(x--c ) log (1 --cx-- _"1 --x2-vfl_c-_c_)dx

+ (x--c) _ log (1 --cx-- _/_x2_."l --c _)

f (x-cy _,"1-_ ,
--. 1--ex-- _, l--x" V'I--c 2

Now

, V,,I _c _
,-. - c + x -,W_
/_x-_ _- - _J-_" - d,

d" " 1--cx--,,1--xZvl--c _

=j'{--c+cZx--cV"l_c2v," 1 .... )'!--c 2 _cx2,,/1--¢_x , x v...l_r 2 V']-x_

(1 --c2)x]ds "= / (x.--()_,, i=f_+ (,--¢)_)--r _ dxd .,,1 --x'

f dx
.] _"1 --x

T_- -- (x -- c) 2 log (x--c)+2 cos ¥/-sin _0d0

+ (x--c) 2 log (l --c._-- _1 _-_ _"1--H)

+ -_,,'_1--e_l'(cos- O--c)dO

'2 cos-_c

(O--sin 0 cos O)+ _,/1---C' sin 0

t[OS O= ]

--e_r/_O cos0=,_
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